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The kinetics of spreading of a liquid drop in a wedge or V-shaped groove, in a network of such grooves, and
on a hydrophilic strip, is reexamined. The length of a droplet of volumeV spreading in a wedge after a time
t is predicted to scale asV1/5t2/5, and the height profile is predicted to be a parabola in the distance along the
wedge. If the droplet is spreading radially in a sparse network of V-shaped grooves on a surface, the radius is
predicted to scale asV1/6t1/3, provided the liquid is completely contained within the grooves. A number of
other results are also obtained.

DOI: 10.1103/PhysRevE.69.041601 PACS number(s): 68.08.Bc, 47.10.1g, 05.45.2a

I. INTRODUCTION

Wetting in complex geometries and on rough surfaces
provides a wealth of fascinating nonlinear hydrodynamics
problems, as well as being of commercial importance in nu-
merous industrial sectors. Perhaps the first kind of problem
to be considered was the penetration of liquid into porous
materials, where Washburn in 1921 demonstrated that the
distance attained by the wetting front follows at1/2 law
wheret is time [1]. Much later the spreading of droplets on
flat surfaces was addressed by various workers, such as Tan-
ner [2] and Lopezet al. [3], although it took some time for
the subtleties of the physics at the wetting front to be re-
solved[4–7]. Generally, the wetting front advances with ata

law wherea is a small exponent which depends on the ge-
ometry of spreading and the origin of the driving force. For
example,a=1/10 for a drop spreading radially driven by
surface tension(Tanner’s law) and a=1/8 for a droplet
spreading radially driven by gravity(see Oronet al. [7] for a
summary of results).

The kinetics of wetting on rough surfaces has also been
investigated experimentally and theoretically[8–10]. A para-
digm for this problem is the spreading of a liquid in a wedge
or V-shaped groove[11–13]; indeed wetting in a network of
V-shaped grooves has been invoked recently for oil spread-
ing on skin [14]. Another kind of problem that has been
considered is the wetting of hydrophilic strips[15], as an
example of wetting in a controlled microstructure that might
be contemplated in a microfluidic device. In all these prob-
lems, at1/2 spreading law has been observed, but in the cases
considered thus far, there has been a reservoir which pro-
vides liquid at essentially a constant pressure. In the present
paper, the problems of spreading in a wedge, in a network of
V-shaped grooves, and on a hydrophilic strip are revisited. It
is found that in the absence of a reservoir, the spreading law
changes tota with a,1/2, similar to Tanner’s law and re-
lated problems.

These problems are first approached by scaling arguments
developed in the following section. Thebona fidesof the
scaling arguments is established by rederiving some known
results for spreading on flat surfaces. In a further section, the
scaling exponents are recovered by similarity analysis on the
underlying partial differential equations which govern
spreading. This also allows the scaling shape of the spread-
ing drops to be computed.

II. SCALING ARGUMENTS

The Washburn problem of a liquid being drawn into a
capillary tube of internal dimensiond shown in Fig. 1(a) is
considered first[1]. This is a model for penetration of liquid
into a porous material for whichd interpreted as a mean pore
size. The arguments here are very familiar, but form the basis
for the more complex problems considered below.

Once the liquid has penetrated a sufficient distanceL@d,
a Poiseuille law obtains for the liquid velocity and the pen-
etration rate, thus

dL

dt
,

d2

h

Dp

L
, s1d

whereh is viscosity, and the pressure drop

Dp , s/d s2d

is due to the surface tensions of the curved surface at the
wetting front, at a mean curvature,1/d. All geometric fac-
tors associated with the shape of the tube and a finite contact

FIG. 1. Various wetting problems:(a) wicking into a capillary,
(b) spreading on a flat substrate,(c) spreading in a wedge, and(d)
spreading along a hydrophilic strip.

PHYSICAL REVIEW E 69, 041601(2004)

1539-3755/2004/69(4)/041601(5)/$22.50 ©2004 The American Physical Society69 041601-1



angle have been dropped, although a contact angleu,p /2
is required for imbibition to take place. Combining Eqs.s1d
and s2d gives

dL

dt
,

s

h

d

L
, s3d

which integrates to

L , sstd/hd1/2. s4d

This is the simplest form of the Washburn equationf1g. The
result arises from a constant pressure drop acting over an
increasing length of liquid, which responds by flowing ac-
cording to the Poiseuille law. As we shall see below, this can
be the case for many situations where a reservoir of liquid is
present, but if a reservoir is absent, the rate of spreading can
be much slower.

Next, the problem of a drop of liquid spreading on a flat
surface is considered, as shown in Fig. 1(b). Usually the
problem is approached by an appeal to the hydrodynamics in
the vicinity of the moving contact line[4,5], but it can be
analyzed using similar concepts to the Washburn problem.
Whilst only previously known results are recovered, the ap-
proach serves to illustrate further the arguments that will be
used for the other problems.

Consider a drop of liquid spreading on a flat surface, in
the case of complete wetting. Let a measure of the radius of
the spreading drop beR and the height in the center beh. In
the lubrication approximation, assuming a scaling shape of
the droplet, all velocities will be proportional to
sh2/hdsDp/Rd (compare Poiseuille law above) whereDp is
the pressure drop between the center and the radiusR. In
particular the drop radius is expanding at a rate

dR

dt
,

h2

h

Dp

R
. s5d

First consider the capillary spreading case where the pressure
gradient is due to surface tensions. Simple geometry shows
that the mean curvature at the center of the droplet forh
!R is ,h/R2 therefore the pressure drop is

Dp , sh/R2, s6d

and hence

dR

dt
,

s

h

h3

R3 . s7d

If h were to be constant, as in the Washburn problem, this
would be enough to determine the spreading rate. Here,
though, a second relation connectingR andh must be sought.
The desired relation follows from the conservation of drop
volumeV,

hR2 , V. s8d

Thus

dR

dt
,

s

h

V3

R9 , s9d

which integrates to

R, sstV3/hd1/10. s10d

This result is Tanner’s lawf2g. The basic scalingR
,V3/10 t1/10 is well documented and has been experimen-
tally verified f4g.

For the case where the spreading is driven by gravity, one
hasDp,rgh wherer is the mass density andg is the accel-
eration due to gravity. Following the same line of argument
as above, one obtainsR,srgtV3/hd1/8 [3]. The behavior
crosses over from capillary spreading to gravity spreading
when the Bond numberrgR2/s increases. SinceR is increas-
ing, this means that capillary spreading always crosses over
to gravity spreading if one waits long enough. The weak
increase in spreading rate has been observed experimentally
[8].

Another case that can be considered is planar or one-
dimensional spreading. The only thing which changes is the
volume conservation law which becomeshL,V where L
replacesR as the measure of extent of spreading, andV is a
volume per unit length. This yieldsL,sstV3/hd1/7 and L
,srgtV3/hd1/5 for capillary [2] and gravity[3] spreading,
respectively.

In the next problem, exactly analogous arguments are ap-
plied to the case of spreading in a wedge, shown in Fig. 1(c).
In the case of spreading from a reservoir, this problem has
been addressed by Romero and Yost[12]. The basic idea is
that one has scale invariance, with the depthh of fluid being
the only relevant length scale. Hence the transverse curvature
of the interface~1/h. Thus, provided the droplet has become
sufficiently extended so that the contribution of the longitu-
dinal curvature to the mean curvature can be neglected, the
pressurep~ s−ds /h where the negative sign obtains if the
surface is convex into the liquid. This is the case if 2u
+f,p where u is the contact angle andf is the wedge
angle as in Fig. 1(c). In this case, the pressure becomes more
negative as the amount of fluid in the wedge gets smaller.
This provides a pressure gradient which drives the liquid
from regions of high loading to low loading.

Even though the liquid has a free surface, a Poiseuille-like
law obtains

dL

dt
,

h2

h

Dp

L
, s11d

whereL is a measure of the extent of spread of the liquid
drop. The pressure drop follows from the above arguments,
Dp,s /h, and therefore

dL

dt
,

s

h

h

L
s12d

in perfect analogy to Eq.s3d in the Washburn problem. The
difference here is thath is a dynamic variable which, similar
to the Tanner’s law derivation above, is found by a volume
conservation law. In this caseAL,V where A,h2 is the
cross section area occupied by the liquid, andV is the vol-
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ume of liquid. Thush,sV /Ld1/2. Substituting into Eq.s12d
results in

dL

dt
,

s

h

V1/2

L3/2 , s13d

which integrates to

L , sstV1/2/hd2/5. s14d

This spreading law,L,V1/5t2/5, is a prediction. It can also
be recovered by a more detailed analysis of the underlying
partial differential equations which will be given in a later
section.

Note that if the liquid had been spreading along the wedge
from a reservoir, this would correspond toh,constant. This
leads to the Washburn resultL, t1/2 and is the origin of the
scaling law obtained by previous workers[11,12].

The next case to be considered is the problem of a droplet
spreading into a network of grooves. This has also been con-
sidered by various groups[8,9,14]. If spreading occurs from
a reservoir, then the front advances with at1/2 Washburn-like
law. However the case where the liquid is completely con-
fined in the grooves is different. The scaling law in this case
follows from arguments similar to those already applied to a
drop spreading in a wedge. The analysis assumes that the
grooves are rather sparse on the surface, in particular that the
volume of liquid in the junction zones can be neglected com-
pared to the volume contained in the grooves.

Consider therefore a drop of liquid spreading in a sparse
random network of grooves. It will spread essentially radi-
ally. Suppose that the groove cross section is a V shape, so
that both the capillary pressure and the Poiseuille scaling
laws can be taken over from the case of spreading in a
wedge. The fact that the grooves are randomly inclined with
respect to the radial pressure gradient only introduces an ad-
ditional numerical prefactor[14]. Thus Eq.(12) above still
holds (with L replaced byR). What changes is the volume
conservation law: asR increases, more grooves become
filled. If the length of grooves per unit area isl−1, wherel is
a characteristic groove spacing on the surface, the total
length of grooves occupied by the liquid,R2/ l and the vol-
ume V,h2R2/ l. Eliminating h between this and Eq.(12)
(with L replaced byR) givesdR/dt,ss /hdslVd1/2/R2. This
integrates to

R, fstslVd1/2/hg1/3. s15d

The basic prediction therefore is that the spreading rate
should slow from thet1/2 Washburn-like law for spreading
from a reservoir, to anR,V1/6t1/3 law as the liquid becomes
confined to the grooves. The result is confirmed by a more
detailed analysis of the underlying partial differential equa-
tions given later.

The final problem that is considered is spreading along a
hydrophilic strip, shown in Fig. 1(d). The case where spread-
ing occurs from a reservoir has been investigated both theo-
retically and experimentally, and it is found that the spread-
ing front advances with a Washburn-liket1/2 law [15]. The
situation in the absence of a reservoir was not investigated
though. Once again, the absence of a reservoir leads to a

slower rate of spreading, and the scaling law can be deter-
mined using analogous arguments to those applied above.

Consider a drop of liquid which is completely wetting on
a hydrophilic strip of widthw. In the late stages, let the
height of the liquid above the surface beh!w, and a mea-
sure of the extent of spreading beL@w. The capillary pres-
sure which drives the spreading is due to the transverse cur-
vature of the interface, which forh!w is ,h/w2. The
pressure gradient is thusDp/L,sh/w2L. In the lubrication
approximation withh!w, a Poiseuille-like law obtains for
the fluid velocity with h being the relevant length scale.
Hence the rate of extension of the droplet obeysdL/dt
,sh2/hdsDp/Ld,ss /hdh3/w2L. Volume conservation indi-
cateshwL,V and eliminatingh between this and the above
spreading rate findsdL/dt,ss /hdV3/w5L4. This integrates
to L,sstV3/hw5d1/5. This is the predicted scaling law for
the late stages of spreading in this problem, in the absence of
a reservoir.

III. SIMILARITY METHODS

The results obtained above can also be derived by using
similarity methods to analyze the underlying partial differen-
tial equations(see for example Ref.[6]). Focus first on the
problem of spreading in a wedge shown in Fig. 1(c). An
equation which expresses local conservation of liquid in the
wedge is

] A

] t
+

] sAv̄d
] x

= 0, s16d

whereA,h2 is the local cross section area occupied by liq-
uid, v̄ the mean velocity of the liquid, andx is distance along
the wedge. The Poiseuille law indicates that the mean veloc-
ity follows

v̄ ~ −
h2

h

] p

] x
. s17d

The arguments above show thatp~−s /h thus

] p

] x
~

s

h2

] h

] x
. s18d

Combining Eqs.s16d–s18d gives the following equation for
the time evolution of the depth of liquid in the groovefcom-
pare Eqs.s8ad–s8cd of Romero and Yostf12gg

] sh2d
] t

= K
s

h

]

] x
Sh2] h

] x
D . s19d

The dimensionless coefficientKsu ,fd is given by Eq.s8cd in
Romero and Yostf12g in terms of the static contact angleu
and the wedge anglef. For spreading to occur,K.0 is
required. This corresponds to 2u+f,p, or a liquid interface
which is convex into the liquid. For the remainder of the
discussion, the factorKs /h and other trivial numerical pre-
factors can be adsorbed into the units of time and will be
omitted.

Equation(19) is basically a nonlinear diffusion equation
and one can seek similarity solutions of the form
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hsx,td , t−b gsxt−ad, s20d

whereu=xt−a is the similarity variable anda is the exponent
in the spreading law. Substituting this in Eq.s19d obtains
both an exponent relation

2a + b = 1, s21d

which must be satisfied for the similarity solution to hold,
and an ordinary differential equationsODEd for the similar-
ity function

gg9 + 2sg8d2 + aug8 + bg = 0. s22d

This is a nonlinear second-order ODE with boundary condi-
tions gs0d=A swhich is set by the drop volumed and g8s0d
=0 srequired by symmetryd.

A second exponent relation follows from the integrated
conservation law. Volume conservation dictates thatV
~e−`

` h2dx is constant. Inserting the similarity solution in
this shows thatV, ta−2b3e−`

` g2du is constant, and there-
fore

a = 2b. s23d

Solving Eqs.s21d and s23d gives

a = 2/5, b = 1/5. s24d

Thus the spreading lawL, t2/5 of the preceding section is
recovered. The dependence onV ands /h can be determined
by dimensional analysis.

To complete the discussion, the ODE for the similarity
function gsud can be solved. Inserting Eq.(24) into Eq. (22)
results in gg9+2sg8d2+2ug8 /5+g/5=0, with gs0d=A and
g8s0d=0. Remarkably, this equation has an extremely simple
closed form solution,

g = A − u2/10. s25d

Note thatg→0 for u→u0=Î10A, so the spreading drop in
the groove has a finite extent. Some examples of the shape
for different values ofA are shown in Fig. 2. The basic
prediction is that the height profile of the liquid surface
for a droplet spreading in wedge is a parabola in the dis-

tance along the wedge. To be specific, from Eqs.s20d,
s24d, and s25d,

hsx,td = h0f1 − sx/x0d2g, suxu , x0d s26d

where the heighth0, t−1/5 and the maximum extent of
spreadingx0, t2/5.

For the case of spreading in a network of grooves, a radial
version of Eq.(19) should be used(there may be an addi-
tional numerical factor from the orientation distribution of
the grooves[14]). Substituting the similarity solution obtains
again the exponent relation Eq.(21), and the following ODE:

ugg9 + 2usg8d2 + gg8 + au2g8 + bug= 0. s27d

The integrated conservation law is nowV~e0
` h2 2pr dr / l.

Substituting the similarity solution shows thata=b must
hold in this case. Combining this with Eq.s21d gives a=b
=1/3, thus the previous scaling exponent is recovered.
Again, the ODE solves exactly for these exponent values to
obtaing=A−u2/6 and again one predicts a parabolic height
profile.

Finally, the problem of a liquid spreading along a hydro-
philic strip shown in Fig. 1(d) is discussed. The governing
partial differential equation has been obtained by Darhuberet
al. for this problem[15]. It is ]h/]t,]fh3s]h/]xdg /]x where
the prefactor can be found from Eq.(7) in Ref. [15]. Substi-
tuting the similarity trial solution Eq.(20) in this yields an
ODE g3g9+3g2sg8d2+aug8+bg=0 with gs0d=A and g8s0d
=0 being initial conditions, and an exponent relation 2a
+3b=1. It follows from V~e−`

` wh dx that a=b. Solving
this together with the preceding exponent relation givesa
=b=1/5, thus recovering the exponent of the preceding sec-
tion. The ODE in this case must be solved numerically. The
resulting shapes again haveg→0 asu→u0 for someu0.0
(which depends on the drop volume) but this time there is a
singularityg,su0−ud1/3 asu→u0 from below(compare Fig.
3 of Ref. [15]).

In all these cases, the fact thatg→0 for u→u0 stands in
contrast to the similarity solution for Tanner’s law for which
there is no point whereg→0 [6]. In that case one has to
invoke an additional microscopic mechanism to account for
the shape of the edge of the drop.

The case of spreading from a reservoir can also be treated
with variant of the above analysis; in fact the essential argu-
ments are already given by Romero and Yost[12] and Dar-
huberet al. [15]. In the case of a reservoir,h is constant at
the reservoir edge which we define to be the pointx=0. In
terms of the similarity solution, Eq.(20), this forcesb=0.
Combining this with the exponent relation in Eq.(21) or the
analogous exponent relation for the strip problem showsa
=1/2 for all cases. Thus the Washburn-like spreading law is
recovered for spreading from a reservoir, independent of
whether spreading takes place in a wedge, in a network of
grooves, or along a strip.

IV. DISCUSSION

The main results concern the kinetics of spreading in vari-
ous geometries. New predictions are made for the scaling

FIG. 2. Shape of a droplet spreading in a wedge. These are
similarity solutionsgsud found by integrating Eq.(22) with bound-
ary conditionsg=A and g8=0 at u=0, for A=1s1d5, whereu is a
scaled distance: the shape is a parabola given by Eq.(25).
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laws governing the rate at which a droplet spreads in a
wedge or V-shaped groove, in a network of such grooves,
and on a hydrophilic strip. These are established both by
simple scaling arguments and by similarity solutions of the
underlying partial differential equations. The asymptotic
shapes of the spreading droplets have also been considered.

Previous work on these problems has assumed the pres-
ence of a reservoir which supplies liquid at constant pressure.
This results in spreading laws which are essentially the same
as the Washburn law for penetration of a liquid into a porous
material or into a capillary. The analysis here complements
this previous work by considering the problems in the ab-
sence of a reservoir. This will apply in the late stages of

wetting when the reservoir becomes exhausted or if there is
only a small amount of liquid present.

These predictions could be tested by simulation or in ex-
periments. The case of a droplet in a wedge would seem to
be particularly simple, for instance a drop will spread in a
right-angled corner provided the contact angle is less than
45°. The prediction that the scaling shape of the droplet
should be a parabola should also be tested.
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