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Late stage kinetics for various wicking and spreading problems
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The kinetics of spreading of a liquid drop in a wedge or V-shaped groove, in a network of such grooves, and
on a hydrophilic strip, is reexamined. The length of a droplet of voléingpreading in a wedge after a time
t is predicted to scale @325 and the height profile is predicted to be a parabola in the distance along the
wedge. If the droplet is spreading radially in a sparse network of V-shaped grooves on a surface, the radius is
predicted to scale aQ'/%1/3, provided the liquid is completely contained within the grooves. A number of
other results are also obtained.
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I. INTRODUCTION II. SCALING ARGUMENTS

Wetting in complex geometries and on rough surfaces The Washburn problem of a liquid being drawn into a
provides a wealth of fascinating nonlinear hydrodynamics;apijjary tube of internal dimensiod shown in Fig. 1a) is
problems, as well as being of commercial importance in Nuzqnsidered firsfL]. This is a model for penetration of liquid
merous industrial sectors. Perhaps the first kind of probleni}1t0 a porous material for whicti interpreted as a mean pore

to be considered was the penetration of liquid into porous.: " -
materials, where Washburn in 1921 demonstrated that thslgze. The arguments here are very familiar, but form the basis

. : . or the more complex problems considered below.
distance attained by the wetting front follows t#? law - . )
wheret is time [1]. Much later the spreading of droplets on Once t_he liquid ha_s penetrateq a_sufﬂment distelre,
flat surfaces was addressed by various workers, such as Tap.F0iseuille law obtains for the liquid velocity and the pen-
ner[2] and Lopezet al. [3], although it took some time for €tration rate, thus

the subtleties of the physics at the wetting front to be re- dL d2A
solved[4—7]. Generally, the wetting front advances witt*a = __p’ (1)
law wherea is a small exponent which depends on the ge- dt 7L

ometry of spreading and the origin of the driving force. For

example,a=1/10 for adrop spreading radially driven by where is viscosity, and the pressure drop

surface tensionTanner’s lawy and a=1/8 for a droplet AD ~ o/d ?)
spreading radially driven by gravitgee Ororet al.[7] for a P
summary of results is due to the surface tensian of the curved surface at the

_The kinetics of wetting on rough surfaces has also beefetting front, at a mean curvaturel/d. All geometric fac-
mvesngate_d experlme'ntally and thgoret|ce[$f—1_q. Apara-  iors associated with the shape of the tube and a finite contact
digm for this problem is the spreading of a liquid in a wedge

or V-shaped groov§l1-13; indeed wetting in a network of
V-shaped grooves has been invoked recently for oil spread- 2 td
ing on skin [14]. Another kind of problem that has been (a) L
considered is the wetting of hydrophilic strips5], as an

example of wetting in a controlled microstructure that might

be contemplated in a microfluidic device. In all these prob- $h
lems, at'/? spreading law has been observed, but in the cases
considered thus far, there has been a reservoir which pro-
vides liquid at essentially a constant pressure. In the present

paper, the problems of spreading in a wedge, in a network of
V-shaped grooves, and on a hydrophilic strip are revisited. It %7 hvg
is found that in the absence of a reservoir, the spreading law pu— I

changes ta* with «<1/2, similar to Tanner’s law and re- (©)
lated problems.

These problems are first approached by scaling arguments
developed in the following section. THeona fidesof the N b
scaling arguments is established by rederiving some known w «’"L"" —
results for spreading on flat surfaces. In a further section, the (@) v
scaling exponents are recovered by similarity analysis on the
underlying partial differential equations which govern  FIG. 1. Various wetting problemga) wicking into a capillary,
spreading. This also allows the scaling shape of the spreadb) spreading on a flat substrate) spreading in a wedge, ar(d)
ing drops to be computed. spreading along a hydrophilic strip.
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angle have been dropped, although a contact a6gler/2 drR o3
is required for imbibition to take place. Combining E¢s) dat ;@- (9)
and(2) gives

which integrates to

dt_ed 3) R~ (ot )10, (10)
dt gL
This result is Tanner's law{2]. The basic scalingR
which integrates to ~ (310110 s well documented and has been experimen-
tally verified [4].
L ~ (otd/n)¥2. (4) For the case where the spreading is driven by gravity, one

hasAp~ pgh wherep is the mass density arglis the accel-
This is the simplest form of the Washburn equatiah The  eration due to gravity. Following the same line of argument
result arises from a constant pressure drop acting over ags above, one obtainR~ (pgtQ3/ 7)Y/8 [3]. The behavior
increasing length of liquid, which responds by flowing ac- crosses over from capillary spreading to gravity spreading
cording to the Poiseuille law. As we shall see below, this catwhen the Bond numbegigR2/ o increases. SincR is increas-
be the case for many sit.ugtions where a reservoir of quuid isng, this means that capillary spreading always crosses over
present, but if a reservoir is absent, the rate of spreading cag gravity spreading if one waits long enough. The weak

be much slower. increase in spreading rate has been observed experimentally
Next, the problem of a drop of liquid spreading on a flat[g].
surface is considered, as shown in Figb)1l Usually the Another case that can be considered is planar or one-

problem is approached by an appeal to the hydrodynamics ifimensional spreading. The only thing which changes is the
the vicinity of the moving contact ling4,5], but it can be  volume conservation law which becombs~ Q where L
analyzed using similar concepts to the Washburn problenyeplacesR as the measure of extent of spreading, &ni$ a
Whilst only previously known results are recovered, the apvolume per unit length. This yields ~ (atQ3/ 7)Y7 and L
proach serves to illustrate further the arguments that will be- (pgt03/ )5 for capillary [2] and gravity[3] spreading,
used for the other problems. respectively.

Consider a drop of liquid spreading on a flat surface, in | the next problem, exactly analogous arguments are ap-
the case of_ complete wetting. Let_a measure of the radius q;lied to the case of spreading in a wedge, shown in Rig). 1
the spreading drop bR and the height in the center beIn | the case of spreading from a reservoir, this problem has
the lubrication approximqtion, as;uming a scalin_g shape Oheen addressed by Romero and Yds?]. The basic idea is
the droplet, all velocities will be proportional 1o that one has scale invariance, with the deptf fluid being
(h?/ ) (Ap/R) (compare Poiseuille law aboyehereAp is  the only relevant length scale. Hence the transverse curvature
the pressure drop between the center and the radelius  of the interfacex1/h. Thus, provided the droplet has become
particular the drop radius is expanding at a rate sufficiently extended so that the contribution of the longitu-
dinal curvature to the mean curvature can be neglected, the
d_RN h_zﬂ (5) pressurep«(—)o/h where the negative sign obtains if the
dt 7 R’ surface is convex into the liquid. This is the case # 2
+¢<<m where 6 is the contact angle ang is the wedge
First consider the capillary spreading case where the pressuadgle as in Fig. ). In this case, the pressure becomes more
gradient is due to surface tension Simple geometry shows negative as the amount of fluid in the wedge gets smaller.
that the mean curvature at the center of the droplethfor This provides a pressure gradient which drives the liquid

<R is ~h/R? therefore the pressure drop is from regions of high loading to low loading.
Even though the liquid has a free surface, a Poiseuille-like
Ap ~ oh/R?, (6)  law obtains
dL  h2A
and hence & _TaR (11)
ad 7y L
dR oh® i .
PTIR= (7) whereL is a measure of the extent of spread of the liquid
n

drop. The pressure drop follows from the above arguments,

If h were to be constant, as in the Washburn problem, thisApNU/h’ and therefore

would be enough to determine the spreading rate. Here, dL  oh

though, a second relation connectiR@ndh must be sought. at AL (12)

The desired relation follows from the conservation of drop 7

volume (), in perfect analogy to Eq:3) in the Washburn problem. The
difference here is thdt is a dynamic variable which, similar

hRe~ Q. (8) to the Tanner's law derivation above, is found by a volume

conservation law. In this cas&L~ Q) where A~h? is the

Thus cross section area occupied by the liquid, &hds the vol-
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ume of liquid. Thush~ (Q/L)Y2. Substituting into Eq(12)  slower rate of spreading, and the scaling law can be deter-

results in mined using analogous arguments to those applied above.
- Consider a drop of liquid which is completely wetting on
dL - o (13) a hydrophilic strip of widthw. In the late stages, let the
dt 5L’ height of the liquid above the surface hesw, and a mea-

sure of the extent of spreading be>w. The capillary pres-
sure which drives the spreading is due to the transverse cur-
L ~ (atQY2/ )25, (14)  Vvature of the interface, which foh<w is ~h/w? The
pressure gradient is thusp/L ~ oh/W2L. In the lubrication
This spreading lawl. ~ QY5%t?3, is a prediction. It can also approximation withh<w, a Poiseuille-like law obtains for
be recovered by a more detailed analysis of the underlyinghe fluid velocity with h being the relevant length scale.
partial differential equations which will be given in a later Hence the rate of extension of the droplet obels dt
section. ~ (W21 )(Ap/L) ~ (a/ p)h3/W2L. Volume conservation indi-
Note that if the liquid had been spreading along the wedgeateshwl~ Q) and eliminatingh between this and the above
from a reservoir, this would correspondfie- constant. This  spreading rate finddL/dt~ (o/ ) Q3/W°L4. This integrates
leads to the Washburn resit-t"/ and is the origin of the g L~ (6tQ3/ W%, This is the predicted scaling law for
scaling law obtained by previous workettl,12. the late stages of spreading in this problem, in the absence of
The next case to be considered is the problem of a droplef reservoir.
spreading into a network of grooves. This has also been con-
sidered by various grougds$,9,14. If spreading occurs from
a reservoir, then the front advances witha Washburn-like IIl. SIMILARITY METHODS

law. However the case where the liquid is completely con-  pa results obtained above can also be derived by using

fined in the grooves is different. The scaling law in this casegimijarity methods to analyze the underlying partial differen-
follows from arguments similar to those already applied to a; ) equations(see for example Ref8]). Focus first on the

drop spreading in a wedge. The analysis assumes that the hiem of spreading in a wedge shown in Figc)LAn

grooves are rather sparse on the surface, in particular that the, ;aion which expresses local conservation of liquid in the
volume of liquid in the junction zones can be neglected com

which integrates to

. : wedge is
pared to the volume contained in the grooves.
Consider therefore a drop of liquid spreading in a sparse aA  9(Av)
random network of grooves. It will spread essentially radi- It + ax (16)

ally. Suppose that the groove cross section is a V shape, so

that both the capillary pressure and the Poiseuille scalingshereA~h?is the local cross section area occupied by lig-
laws can be taken over from the case of spreading in &lid,v the mean velocity of the liquid, andis distance along
wedge. The fact that the grooves are randomly inclined witithe wedge. The Poiseuille law indicates that the mean veloc-
respect to the radial pressure gradient only introduces an ady follows

ditional numerical prefactofl4]. Thus Eq.(12) above still W29

holds (with L replaced byR). What changes is the volume Do — __p. (17)
conservation law: afRR increases, more grooves become 7 dX

filled. If the length of grooves per unit arealig, wherel is The arguments above show that —o/h thus
a characteristic groove spacing on the surface, the total

length of grooves occupied by the liquidR?/I and the vol- ap odh

ume Q~h?R?/I. Eliminating h between this and Eq12) X Rax’ (18)

(with L replaced byR) givesdR/dt~ (o/ 7)(1Q)Y?/R?. This o _ _ .

integrates to Combining Eqs(16)—(18) gives the following equation for
the time evolution of the depth of liquid in the grooy@m-

R~ [at(10)Y2/5]*3. (15)  pare Eqs(8a—8c) of Romero and Yosf12]]
The basic prediction therefore is that the spreading rate d(h?) od [ ,0h
should slow from the®? Washburn-like law for spreading T pax\" ax) (19

from a reservoir, to aR~ Q%3 Jaw as the liquid becomes
confined to the grooves. The result is confirmed by a morelhe dimensionless coefficieKi(¢, ¢) is given by Eq(8¢c) in
detailed analysis of the underlying partial differential equa-Romero and Yosf12] in terms of the static contact angfe
tions given later. and the wedge angle. For spreading to occuK>0 is
The final problem that is considered is spreading along #@equired. This corresponds t@2 ¢ <, or a liquid interface
hydrophilic strip, shown in Fig. ). The case where spread- which is convex into the liquid. For the remainder of the
ing occurs from a reservoir has been investigated both thedatiscussion, the factdo/ » and other trivial numerical pre-
retically and experimentally, and it is found that the spreadfactors can be adsorbed into the units of time and will be
ing front advances with a Washburn-lik¥? law [15]. The  omitted.
situation in the absence of a reservoir was not investigated Equation(19) is basically a nonlinear diffusion equation
though. Once again, the absence of a reservoir leads toand one can seek similarity solutions of the form
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6 — T T T tance along the wedge. To be specific, from E(®0),
(24), and(25),

h(x,t) =ho[1 = (X/%0)?], (X < Xo) (26)

where the heighthy~t™/> and the maximum extent of
spreadingx~ t%/°.

= For the case of spreading in a network of grooves, a radial
version of Eq.(19) should be usedthere may be an addi-
tional numerical factor from the orientation distribution of
the grooveg14]). Substituting the similarity solution obtains
again the exponent relation EQ1), and the following ODE:

ugd’ +2u(g')?+gg +au’g’ + Bug=0.  (27)

FIG. 2. Shape of a droplet spreading in a wedge. These are | . . —_—
similarity solutionsg(u) found by integrating Eq22) with bound-  1h€ integrated conservation law is nd [o h® 27 dr/l.
ary conditionsg=A andg’ =0 atu=0, for A=1(1)5, whereu is a  Substituting the similarity solution shows that= must

scaled distance: the shape is a parabola given by 2. hold in this case. Combining this with ER1) gives a=p
=1/3, thus the previous scaling exponent is recovered.

Again, the ODE solves exactly for these exponent values to
obtaing=A-u?/6 and again one predicts a parabolic height

whereu=xt"* is the similarity variable and is the exponent profile.

h(x,t) ~ t7# g(xt™®), (20)

in the spreading law. Substituting this in EQL9) obtains Finally, the problem of a liquid spreading along a hydro-
both an exponent relation philic strip shown in Fig. dd) is discussed. The governing
partial differential equation has been obtained by Darheber
2a+ pB=1, (21)  al. for this problem[15]. It is oh/ ot~ a[h3(h/dx)]/ 9x where

the prefactor can be found from E) in Ref. [15]. Substi-
tuting the similarity trial solution Eq(20) in this yields an
ODE ¢°g"+3g%(g’)?+aug’ +Bg=0 with g(0)=A and g’(0)

=0 being initial conditions, and an exponent relatioa 2
gg’+2(g")?+ aug’ + Bg=0. (220 +3p=1. It follows from Q< [Z wh dxthat a=p. Solving

this together with the preceding exponent relation giwes

. o ; =B=1/5,thus recovering the exponent of the preceding sec-
tions g(O)_:A (which is set by the drop volumend g'(0) tion. The ODE in this case must be solved numerically. The
=0 (required by symmetiy resulting shapes again hage-0 asu— u, for someuy>0

A second exponent relation follows_ from_ the integrated(which depends on the drop volunieut this time there is a
conservation law. Volume conservation dictates tl§at singularityg~ (uy—u)“/3 asu— u, from below(compare Fig.

« [*_h?dx is constant. Inserting the similarity solution in
!~ - . 3 of Ref.[15]).
this shows that) ~t*2#x [*_g°du is constant, and there- [15)

which must be satisfied for the similarity solution to hold,
and an ordinary differential equatid@DE) for the similar-
ity function

This is a nonlinear second-order ODE with boundary condi

In all these cases, the fact thgt— 0 for u— ug stands in

fore contrast to the similarity solution for Tanner’s law for which
a=2p. (23) there is no point wherg— 0 [6]. In that case one has to
invoke an additional microscopic mechanism to account for
Solving Egs.(21) and(23) gives the shape of the edge of the drop.
w=2/5, B=1/5. (24) The case of spreading from a reservoir can also be treated

with variant of the above analysis; in fact the essential argu-

Thus the spreading law ~t%° of the preceding section is Ments are already given by Romero and YJdst] and Dar-
recovered. The dependence@rando/ z can be determined huberet al. [15]. In the case of a reservoin, is constant at
by dimensional analysis. the reservoir edge which we define to be the paeinD. In
To complete the discussion, the ODE for the similarityterms of the similarity solution, E¢(20), this forcess=0.
functiong(u) can be solved. Inserting E(R4) into Eq.(22) ~ Combining this with the exponent relation in E&1) or the
results ingg’'+2(g')2+2ug' /5+g/5=0, with g(0)=A and @analogous exponent relation for the strip problem shaws

g'(0)=0. Remarkably, this equation has an extremely simple:1/2 for all cases. Thus the Washburn-like spreading law is
closed form solution recovered for spreading from a reservoir, independent of

whether spreading takes place in a wedge, in a network of
g=A-u%10. (25) grooves, or along a strip.

Note thatg— 0 for u— uy=110A, so the spreading drop in
the groove has a finite extent. Some examples of the shape
for different values ofA are shown in Fig. 2. The basic
prediction is that the height profile of the liquid surface  The main results concern the kinetics of spreading in vari-
for a droplet spreading in wedge is a parabola in the diseus geometries. New predictions are made for the scaling

IV. DISCUSSION
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laws governing the rate at which a droplet spreads in avetting when the reservoir becomes exhausted or if there is

wedge or V-shaped groove, in a network of such groovespnly a small amount of liquid present.

and on a hydrophilic strip. These are established both by These predictions could be tested by simulation or in ex-

simple scaling arguments and by similarity solutions of theperiments. The case of a droplet in a wedge would seem to

underlying partial differential equations. The asymptotiche particularly simple, for instance a drop will spread in a

shapes of the spreading droplets have also been consideragyyht-angled corner provided the contact angle is less than
Previous work on these problems has assumed the pregse The prediction that the scaling shape of the droplet

ence of a reservoir which supplies liquid at constant pressurg,ouid be a parabola should also be tested.
This results in spreading laws which are essentially the same

as the Washburn law for penetration of a liquid into a porous

mgtenal or into a capillary. _The_ analysis here cor_nplements ACKNOWLEDGMENT

this previous work by considering the problems in the ab-

sence of a reservoir. This will apply in the late stages of | thank Alex Lips for discussions and encouragement.
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